
Genetic Programming and Evolvable Machines manuscript No.
(will be inserted by the editor)

Better GP Benchmarks: Community Survey Results and
Proposals

David R. White, James McDermott,
Mauro Castelli, Luca Manzoni, Brian
W. Goldman, Gabriel Kronberger,
Wojciech Jaśkowski, Una-May O’Reilly,
and Sean Luke

Received: date / Accepted: date

Abstract We present the results of a community survey regarding genetic
programming (GP) benchmark practices. Analysis shows broad consensus that
improvement is needed in problem selection and experimental rigor. While views
expressed in the survey dissuade us from proposing a large-scale benchmark
suite, we find community support for creating a “blacklist” of problems which
are in common use but have important flaws, and whose use should therefore
be discouraged. We propose a set of possible replacement problems.

Keywords Genetic programming · benchmarks · community survey

David R. White, david.r.white@glasgow.ac.uk
School of Computing Science, University of Glasgow, UK.

James McDermott, jmmcd@jmmcd.net
School of Business and Complex and Adaptive Systems Laboratory, University College
Dublin, Ireland.

Mauro Castelli, mcastelli@isegi.unl.pt
Instituto Superior de Estat́ıstica e Gestão de Informação (ISEGI), Universidade Nova de
Lisboa, Portugal.

Luca Manzoni, luca.manzoni@disco.unimib.it
Dipartimento di Informatica, Sistemistica e Comunicazione, University of Milano-Bicocca,
Italy.

Brian W. Goldman, brianwgoldman@acm.org
BEACON Center for the Study of Evolution in Action, Michigan State University, USA.

Gabriel Kronberger, gabriel.kronberger@heuristiclab.com
University of Applied Sciences Upper Austria, Austria.

Wojciech Jaśkowski, wjaskowski@cs.put.poznan.pl
Institute of Computing Science, Poznan University of Technology, Poland.

Una-May O’Reilly, unamay@csail.mit.edu
CSAIL, Massachusetts Institute of Technology, USA.

Sean Luke, sean@cs.gmu.edu
Department of Computer Science, George Mason University, USA.



2 White et al.

1 Introduction

This paper discusses the results of a survey of the Genetic Programming com-
munity concerning the current state of benchmarks as used in the field, suggests
that several problems in common use should be blacklisted, i.e. discouraged
from further use, and proposes some possible replacements. The survey arose
after a spirited discussion at GECCO 2012 following presentation of the position
paper Genetic Programming Needs Better Benchmarks [32]. That paper listed
the many problems that have been used as benchmarks, summarized recent
benchmark practice, argued that improvements were needed, and described
the potential advantages of a standardized benchmark suite. It also identified
the importance of community involvement in any debate or standardization
effort. Audience discussion during the paper’s presentation broadly supported
the project, with some reservations.

The central goal of the GP Benchmarks Project1 is to identify and help to
implement benchmarking improvements needed in GP. It aims to be community-
driven. The long and diverse author lists of the GECCO paper and the current
paper reflect the goal of being led by the opinions of the whole community
rather than those of a small in-group. The first step is to identify whether the
community feels improvements are needed, and if so what they are. This was
the purpose of the survey whose results are detailed here.

Although the creation of a standardized benchmark suite is one possible
outcome of this process, that only becomes a goal insofar as it reflects a
consensus among the community. The possible roles of the project include:
focusing discussion, and providing a forum for it; curating documents, code,
and data; raising awareness of benchmark issues; and gathering and publishing
data on community attitudes. It is not the role of the project to carry out
original research such as developing new benchmarks. We believe that individual
researchers with expertise in particular areas of GP are best-qualified to carry
out that task.

The creation of a standard suite has been recognized as an important issue
for the future of GP [35]. Of course, common test problems have always existed
in GP. Some of the problems introduced by Koza [28,29] have become very
widely used. Two notable efforts at creating updated benchmark suites were
GP-Beagle [7] and the Evolutionary Computation Benchmarking Repository
(EvoCoBM) [43], but neither is now active.

In Section 2, next, we present the methodology behind the survey and
its results. In Section 3 we include an extended review of recent benchmark
usage in the GP literature. In Section 4 we summarize the issues and present
our rationale for the next steps: in Section 5 we propose a “blacklist” of
benchmarks that should not be used, and in Section 6 we provide a list of
possible replacements.

1 http://gpbenchmarks.org/

http://gpbenchmarks.org/


Better GP Benchmarks: Community Survey Results and Proposals 3

2 Community Survey

The goal of the survey was to gather the opinions of the community on
benchmarking practice and related matters. We developed the key areas of
interest in the survey through discussion on the GP mailing list, and within
the GP benchmarks special interest group. The areas of opinion solicited are
given in Table 1.

Category Survey Questions

1. Demographics 24, 25, 26, 27, 28
2. Current empirical practice in GP 1, 2, 3, 4, 7, 8
3. Problems with current practice 5, 6
4. Other benchmarking efforts 9, 10, 11
5. The potential creation of a new benchmark suite 12, 13, 14, 15, 16
6. Composing a new benchmark suite 17, 18, 19, 20, 21, 22, 23

7. Other comments and email address (optional) 29, 30

Table 1 Areas of interest for our survey and their corresponding questions.

There were 30 questions in total. The majority were multiple-choice or
box-checking questions, some with free text options. Five questions required
only free text responses. No questions were marked as mandatory. The survey
questions, raw quantitative data, and some summary data are available for
download from http://gpbenchmarks.org.

2.1 Notes on Survey Methodology

The survey was designed by two GP practitioners, with the assistance of
experienced survey designers from other Computer Science disciplines. Several
rounds of testing and review were completed with colleagues of the authors
to pilot the survey. The final survey was opened on July 9th 2012 and closed
on July 31st 2012. The survey was implemented online, via the SurveyMonkey
questionnaire web service. It was advertised via the GECCO presentation, the
GP mailing list, Twitter, and a handful of personal emails to practitioners
within the field.

There were a total of 15 opportunities for free text answers, including the
length of experience the respondent had and their email address. To facilitate
analysis and anonymization, these answers were subsequently coded by the
survey designers. Coding [41] is the standard practice of categorizing fragments
of qualitative text into abstract identifiable groups of response types. A grounded
theory approach was used [45], meaning that the response types were extracted
from the text, rather than beginning with an a priori list. Response types were
organized into tree-structures, one per question. The coding was carried out
independently by two researchers and then differences were resolved through a
process of discussion and refinement. These methods are standard practice [41].
The resulting codings are included online with the rest of the survey results.

http://gpbenchmarks.org


4 White et al.

0 5 10 15 20
Years of GP Experience

0

2

4

6

8

10

12

14

16

18

R
e
sp

o
n
se

 C
o
u
n
t

Fig. 1 Question 26: “For how many years have you worked in or studied GP?” 5 respondents
skipped this question.

2.2 Results

In total 79 responses were received. The following subsections describe the
results from each of the categories set out in Table 1. Responses to Question
29 (“any other comments”) are placed according to the topic they refer to, and
responses to Question 30 (email addresses) are excluded.

2.2.1 Demographics

Figure 1 shows the length of time respondents had been working in the GP
field. The two main channels through which respondents were recruited to the
survey were the GECCO presentation itself (29%) and GP mailing list (37%).
Of all the respondents, 37% had attended the GECCO presentation, and 57%
had read the GECCO paper. Almost all (89%) claimed to have medium to
high expertise in GP benchmark issues.

2.2.2 Current Empirical Practice

Question 1 asked “In your work on Genetic Programming, do you run ex-
periments to measure algorithm performance?” Over 80% of practitioners
responded that they performed such measurements in every or almost every
paper, which underscores the highly empirical nature of the field. Only a few
respondents never produce algorithm performance measurements.

The types of problems used by respondents (Question 2) are detailed in
Figure 2. Around 70% used well-known GP benchmarks, thus demonstrat-
ing that de facto benchmarks have emerged in the absence of any formally
established suite. Two thirds of respondents used real-world problems, while
large numbers also used self-developed problems, problems from other fields,
or more atypical GP problems. A few respondents mentioned competitions,
UCI datasets, randomly-generated benchmarks, and other sources.

Question 3 asked “When running experiments to measure performance of a
new technique, do you use existing techniques as controls?” Most respondents



Better GP Benchmarks: Community Survey Results and Proposals 5

0 10 20 30 40 50 60
Response Count

Other (please specify)

Real-world problems

Problems taken from other fields, not commonly
used in GP

Problems developed by me or my group

Problems from the GP literature which are rarely
used as benchmarks

Well-known GP benchmark problems

7 (9%)

52 (66%)

31 (39%)

42 (53%)

17 (22%)

55 (70%)

Fig. 2 Question 2: “What types of problems do you use? Please check all that apply.”

(63%) said they run new experiments with existing techniques, but some (19%)
rely on previously published results for comparison. Around 8% of respondents
do not use controls. The remainder failed to answer or reported that the
question was not applicable to their work.

When running control experiments using existing techniques (Question 4),
33% of respondents reported that they re-implement those techniques, 44% use
third-party code, and the remainder failed to answer or found the question not
applicable.

Figure 3 gives the responses for questions 7 and 8, which asked about the
different types of GP that practitioners were using. Standard tree-based GP
was the clear winner, with grammatical GP and standard GP with strong
typing or other modifications the two runners-up.

2.2.3 Problems with the Current Experimental Regime

In answer to Question 5, the vast majority—94% of respondents—thought that
the “current experimental regime” has some disadvantages. They were asked
to specify in detail what those disadvantages were, in Question 6.

Figure 4 gives the results for pre-specified answers. A total of 76% mentioned
the lack of standardization and difficulty of comparing results across papers,
73% mentioned the issue of “toy problems,” and 28% mentioned wasted effort
when running control experiments.

The optional free-text “other” response also yielded interesting results, with
22 respondents mentioning: poor choices of problems (often “toy problems,”
or out-of-date or non-standardized ones) and poor quality experimentation
(non-standard methods, cherry-picking of results), statistics (non-standard and
unrigorous), and reporting (omitted details prevent replicability). Many of
these issues were again mentioned in free-text responses to Question 29.

In summary, respondents had two prime concerns with current empirical
practice in the field. Firstly there was a strong consensus against the use of



6 White et al.

0 10 20 30 40 50 60 70
Response Count

Other (please specify)

Evolution of neural networks (e.g. NEAT)

Generative and developmental representations

Estimation of Distribution Algorithm GP

Standard GP with strong typing or other
modifications

Finite-state machine GP (e.g. Evolutionary
Programming)

Stack-based GP (e.g. PushGP)

Grammatical GP (e.g. Grammatical Evolution)

Linear GP

Cartesian GP

Standard GP (i.e. tree-based GP)

11 (14%)

8 (10%)

14 (18%)

10 (13%)

32 (41%)

3 (4%)

12 (15%)

30 (38%)

20 (25%)

9 (11%)

65 (82%)

(a) Question 7: Which types of GP do you use (tick all that apply)?

0 5 10 15 20 25 30
Response Count

No response

Other (please specify)

Evolution of neural networks (e.g. NEAT)

Generative and developmental representations

Estimation of Distribution Algorithm GP

Standard GP with strong typing or other
modifications

Finite-state machine GP (e.g. Evolutionary
Programming)

Stack-based GP (e.g. PushGP)

Grammatical GP (e.g. Grammatical Evolution)

Linear GP

Cartesian GP

Standard GP (i.e. tree-based GP)

1 (1%)

6 (8%)

0 (0%)

1 (1%)

2 (3%)

12 (15%)

0 (0%)

6 (8%)

16 (20%)

5 (6%)

2 (3%)

28 (35%)

(b) Question 8: Which type of GP do you use the most?

Fig. 3 Questions 7 and 8 concerned the types of GP used by respondents.



Better GP Benchmarks: Community Survey Results and Proposals 7

0 10 20 30 40 50 60
Response Count

No response

Other (please specify)

Some problems are "toy problems"

Lack of standardisation/impossible to compare
results across papers

Wasted effort in running control experiments

8 (10%)

22 (28%)

58 (73%)

60 (76%)

16 (20%)

Fig. 4 Question 6: “If yes [current experimental regime has disadvantages], what are those
disadvantages? Please check all that apply.”

particular benchmarks, to be further discussed in Section 5. The second concern
was that a lack of strong rigor and methodical reporting of results and methods
is hampering replicability and progress in the field. These two issues appeared
to be of approximately equal importance to respondents.

2.2.4 Other Benchmarking Efforts

The next set of questions concerned other benchmarking efforts. Questions 9
and 10 asked about previous efforts at creating standardized benchmark suites
for GP. A slight majority had heard of such efforts, but only 20% had used
them. Question 11 asked about benchmark suites in areas other than GP: 47%
said they had used such suites. That is, past attempts to create benchmark
suites have failed to gain significant adoption by the GP community, in contrast
to other fields.

2.2.5 Attitudes Towards a New Benchmark Suite

Questions 12–16 gauged respondents’ attitudes towards the creation of a new
benchmark suite. An overwhelming majority of responses were positive: 83%
were in favor of the creation of a suite (Question 12), while 84% said they
would use such a suite if it was created (Question 15). 91% said they would use
such a suite in addition to their own preferred problems, rather than using the
suite exclusively (Question 16). However, this was not the end of the argument;
there was a small but strongly vocal minority against creating a standardized
benchmark suite, and also a diversity of opinions about the why, the what, and
the how of any potential suite.

The reasons given for and against the creation of a benchmark suite illustrate
the diversity of views that exist in the community. Figure 5 shows responses
covered by the pre-specified answer options.

Note that some respondents who were in favor of the creation of a benchmark
suite nevertheless gave some reasons against it. The conditional wording of



8 White et al.

0 10 20 30 40 50 60 70
Response Count

Other (please specify)

Useful as a first step in evaluating a new
technique

Find out which techniques are the best

Demonstrate GP's success to outside parties

Standardisation

Allow easier comparisons between techniques

5 (6%)

51 (65%)

34 (43%)

33 (42%)

51 (65%)

65 (82%)

(a) Question 13: “If yes, why? Please check all that apply.”

0 5 10 15 20 25 30 35
Response Count

No response

Other (please specify)

Incremental improvements on benchmarks aren't as
important as fundamental improvements

Benchmarks are unrealistic

Researchers might concentrate on benchmarks,
ignoring issues not covered in the benchmarks

It might be a good idea, but the required
community effort and support would not materialise

Existing benchmark practices are good enough

34 (43%)

7 (9%)

12 (15%)

4 (5%)

19 (24%)

3 (4%)

0 (0%)

(b) Question 14: “If not, why not? Please check all that apply.”

Fig. 5 Questions 13 and 14 asked why respondents were or were not in favor of the creation
of a benchmark suite.

Question 14 (“if not, why not?”) was not enforced by the survey software.
Therefore, it is best to read Question 14 as giving reasons against the creation
of a suite, even if the respondent was on balance in favor (and vice versa for
Question 13).

Arguments in favor of a benchmark suite were evenly divided among the
several responses shown in Figure 5(a). Free-text responses in favor were for
the most part simply elaborations on the pre-specified responses. A few extra
motivations included improving the ability to track state-of-the-art results, to
provide a taxonomy of GP problems, and to identify in such a taxonomy the
types of problems for which GP is suitable.



Better GP Benchmarks: Community Survey Results and Proposals 9

Arguments against the creation of a benchmark suite were again divided
among several responses, but the danger of “research distortion”, i.e. concen-
tration on benchmark performance to the exclusion of other issues, dominated.

The free-text responses here were very strongly argued. They might be
grouped into two main categories:

1. Some said that a standardized suite could be actively harmful:

– benchmarks are not realistic, and real-world applications are not always
amenable to benchmarking; it is difficult to choose a benchmark that
predicts performance on a specific real-world problem;

– the existence of benchmarks can distort a field, encouraging “teaching to
the test” and marginal improvements; one respondent said the problem
of research distortion was “obvious in other fields”;

– a small group should not create a centralized benchmark in an attempt
to dictate to the wider field;

– a static benchmark suite could limit innovation; and

– creating a benchmark suite that truly allows fair comparison of results
across papers, without replication, is very difficult.

2. Several respondents argued that, although a standardized suite might not
be harmful, GP experimental practice has other, more pressing problems,
in particular its rigor. Within this category, four main issues were raised:

– a lack of open source code and open data;

– weak or non-standard statistical analysis;

– unprincipled comparisons to results obtained with weak, unoptimized
versions of other methods; and

– insufficient reported detail for replication of experiments.

The free-text Question 29 was used by several respondents to expand on
this topic, and responses were mixed: 30% of those who responded to Question
29 made generally positive comments, e.g. wishing the project good luck, while
15% made generally negative comments, including warnings that the creation
of a benchmark suite could be harmful.

2.2.6 Composition of a New Benchmark Suite

Finally, opinions were solicited on the composition of any benchmark suite.
Question 17 asked whether real-world or synthetic problems should be used,

and 93% were in favor of using both.
Question 19 asked about the types of problems that a benchmark suite

should include. Six types were pre-specified: symbolic regression, Boolean
functions, route-finding/planning, constructed problems, algorithmic problems
(called “True programming” in the survey), and classification. All attracted



10 White et al.

0 10 20 30 40 50 60 70
Response Count

Other (please specify)

Classification

"True programming" (searching, sorting, object-
oriented GP, etc.)

Constructed problems

Route-finding/planning

Boolean Functions

Symbolic regression

26 (33%)

55 (70%)

57 (72%)

40 (51%)

44 (56%)

45 (57%)

62 (78%)

Fig. 6 Question 19: “What application domains and problem types should the benchmark
suite contain? Please check all that apply.”

majority support (see Figure 6). This is in accord with several of the free-text
responses, which emphasized diversity of problems. However, two respondents
pointed out that too many problems or too diverse a suite would also present
difficulties to experimenters.

Other problem types mentioned by respondents were: games, pattern iden-
tification, agent control, signal processing, design, video compression, bioin-
formatics, data mining, text processing, computer vision, stock forecasting,
and numerical problems such as finite element methods, partial differential
equations, and time series prediction. Six respondents referred to “real-world”
problems in general. Responses to the later free-response Question 29 mentioned
pole-balancing and (again) algorithmic problems. Two respondents mentioned
that theoretical or synthetic problems can have value as benchmarks.

Other responses to Question 29 argued that GP has become inward-looking,
solving problems that would not be seen as interesting outside of the field. Four
responses called for representation-independent problems that allow compar-
isons with non-GP techniques.

Questions 22 and 23 were for free-text responses only. They asked respon-
dents to suggest specific problems that should and should not form part of a
benchmark suite, respectively.

For problems to include, several respondents suggested new variants of
symbolic regression, including dynamic symbolic regression, the Q-function
used by Phong et al. [39], the chaotic flow function described by Sprott [44],
symbolic regression for protein folding predictions, the Dow Chemical dataset
used in previous symbolic regression EvoCompetitions (see Section 6.3), and
the spline regression problems defined by Friedman [11].

Others proposed classification datasets available from UCI and KDD, and
classification for bioinformatics applications. The Physical TSP problem and
several games were mentioned. There was again support for signal processing,



Better GP Benchmarks: Community Survey Results and Proposals 11

0

40
Fast in CPU time

0

40Easy to implement and run

0

40Realistically difficult

0

40Tunable, i.e. easier and harder versions
available for testing scalability

0

40Representation-independent

0

40Open-source

0

40Reference implementation available

Not important Very important

R
e
sp

o
n
se

 C
o
u
n
t

Fig. 7 Question 18. “How important are these properties of benchmarks?”

algorithmic and synthetic problems. Other suggested problems rarely mentioned
elsewhere included prime number prediction [52] and real-valued optimization.
One respondent recommended Boolean problems, but suggested that better
ones than the typical parity and multiplexer problems were required, such as
the multiple output parallel multiplier [53].

Concerning problems to exclude, the responses to Question 23 were dom-
inated by arguments against the de facto benchmark suite of the quartic
polynomial, lawnmower, artificial ant, multiplexer, and parity. In total 24
respondents argued against continued use of Koza’s original demonstration
problems in general, or one of the aforementioned problems directly. Four re-
spondents argued against “toy problems”. There was some support for moving
away from symbolic regression, Boolean, and control problems entirely. Other
specific problems mentioned were cart centering, two-box, and the royal tree.
However, several respondents argued that all problems should be retained,
subject to appropriate use.

Question 18 asked respondents to weigh the importance of various bench-
mark properties. Figure 7 shows the results. There is a skew towards regarding
all properties as “important”, but this does not prevent comparison of their
relative importance. The property judged least important was being fast in
CPU time, while being open-source and having a reference implementation
available were regarded as the most important. Responses to the later free-text
Question 29 also commented on this topic, mentioning that benchmarks should



12 White et al.

0

40Population size, number of generations,
etc., or budget of fitness evaluations

0

40Crossover operators, mutation operators,
initialisation method, etc

0

40Generation of random constants and similar,
where applicable

0

40
Function and terminal sets

0

40Variable ranges (e.g. x = 0.0, 0.1, ... 1.0)

0

40Training and testing splits

Unspecified Tightly specified

R
e
sp

o
n
se

 C
o
u
n
t

Fig. 8 Question 20: “If using a standardized benchmark suite, how tightly should details
be specified? Please bear in mind that sometimes specifying details prevents comparison of
non-standard or new techniques.”

be real-world, representation-independent, fast and simple to execute and
understand, realistically difficult, or tunably difficult.

Question 20 asked how much detail should be specified in a benchmark
suite. Results (see Figure 8) were generally quite extreme: most respondents
said that details should be either entirely unspecified or tightly specified. The
strongest support for tight specification came for the function and terminal
sets, variable ranges, and training and testing splits. The weakest support
for tight specification came for properties such as population size, number of
generations, or fitness evaluation budget; operators and initialization method;
and generation of random constants “and similar, where applicable.”

Question 20 did not allow free-text responses, but the following Question 21
asked respondents to give any other details they thought should be specified. 33
respondents gave a very great variety of responses. Several respondents proposed
to use something other than fitness evaluations as the unit of budgeting: the
number of node evaluations, the number of fitness case evaluations, or the
number of runs. A few respondents wanted more details of the experimental
method, analysis and reporting to be specified as part of every benchmark.
Some also called for a standard reporting methodology, while others asked for
solution complexity to be reported as standard. There was no clear consensus
on what should be specified outside of the problem definition.

Other respondents emphasized that the programming language, the function
set and terminal set, the methodology and range for constants, and the cross-
validation strategy must be specified. Others said that the fitness function and
the data generation method must be precisely specified, but one suggested that
fitness should be black-box to prevent inadvertent bias. Special emphasis was



Better GP Benchmarks: Community Survey Results and Proposals 13

placed on the nitty-gritty details of interaction with a dynamic environment
and exceptional cases such as overflows and range errors.

Some respondents used this question as an opportunity to emphasize that
papers should include sufficient detail for replicability, whether a benchmark
suite exists or not.

Other respondents cautioned against over-specification. One respondent
stated that the crossover, mutation, and initialization operators should not
be specified, while several more decided that details should be flexible where
needed, and that a benchmark suite should be open to new ideas. One cautioned
again against the creation of a “nanny state.”

2.3 Threats to Validity

2.3.1 Internal Validity

The design and interpretation of a survey can affect its results. To avoid
weaknesses in our survey design, we enlisted the help of several experienced
survey designers to moderate our designs. Furthermore, we piloted the survey
with individuals who were excluded from the final survey, and produced several
revisions of the design. The full survey text, raw data for numerical responses
and coded data for free-text responses is available online, so that third parties
can form their own conclusions. Interpretation (coding) of the free text answers
was performed independently by two researchers and subsequently discussed
and resolved, in order to reduce the subjective element of the process.

2.3.2 External Validity

External validity is often threatened by low response rates. In order to gather
as many responses as possible, we actively promoted the presentation of our
previous GECCO paper, the discussion, and the survey itself via social media,
mailing lists, and direct emails. Whilst this addressed the risk of low response
rates, it also increased the risk of sample bias, i.e. an unrepresentative sample
of views from the community. The good response rate partly mitigates this
risk, but we have also been careful not to generalise from minority opinions
that may be considered outliers. To further our policy of transparent reporting,
we asked respondents where they heard of the survey, so that if any bias is
introduced, it is at least reported.

3 Other Sources of Data and Opinion

Next, we summarize data and opinion from two other sources: the discussion
following the presentation of our previous paper at GECCO 2012, and a review
of current practice, in terms of the problems used in recent GP papers.



14 White et al.

Category Number of Papers Percentage

Symbolic Regression 77 36.2
Quartic Polynomial 15 7.0

Classification 45 21.1
UCI database examples 23 10.8

Predictive Modeling 30 14.1

Boolean 37 17.4
Parity 31 14.6

Multiplexer 21 9.9

Path finding and planning 44 20.7
Artificial Ant 24 11.3

Control Systems 5 2.4

Game Playing 5 2.4

Dynamic Optimisation 7 3.3

Traditional Programming 8 3.8

Constructed Benchmarks 12 5.6

Other 10 4.7
Max problem 5 2.4

Table 2 Problem domains used in EuroGP and GECCO GP track papers 2009–2012.

3.1 GECCO Discussion

The informal audience discussion that followed the GECCO 2012 paper’s
presentation was a useful step in gathering community opinion. The discussion
was attended by approximately 60 people, but less than 20 contributed to the
conversation and thus this cannot be regarded as a representative sample or a
community consensus. More comments and detail are available online.2

The feedback from this discussion is similar to that found in the survey
responses mentioned above. There was a general sentiment that things must
be improved, and that new benchmarks and better empirical practice were the
two most promising ways of making this improvement.

As in the survey, there was a backlash against the “toy problems” that
have become de facto benchmarks, and a few respondents suggested that
in particular we should begin to move away from symbolic regression and
classification, and towards planning and algorithmic problems (see Section 6.6).
It was in this discussion that the idea of a “benchmark blacklist” was first
proposed to discourage further usage of toy problems. New problems, it was
argued by one attendee, should be much more difficult. Others asserted that
benchmarks should be chosen in order to provide explicit direction to the field.

It was also debated as to whether multi-objective problems should be
included in the suite; we feel that this is outside of the scope of this paper, and
leave it the rest of the community to improve benchmarking in that area.

2 http://gpbenchmarks.org/gecco-2012-discussion/

http://gpbenchmarks.org/gecco-2012-discussion/


Better GP Benchmarks: Community Survey Results and Proposals 15

3.2 Review of Recent GP Practice

To assess current benchmarking practice, we surveyed the 229 articles presented
in EuroGP and the GP track of GECCO from 2009 to 2012. Of these, 213
(93%) used benchmarking experiments. The results are shown in Table 2. Raw
data from this complete review is available for download.3

4 Implications

4.1 Would a Benchmark Suite be Harmful?

The survey has revealed broad support from the community for the creation
of a good, standardized benchmark suite. The potential advantages of such a
suite are clear: it would allow direct comparisons of best results among GP
methods and between GP and non-GP techniques; it would help to identify
the state of the art, and the strengths and weaknesses of different approaches;
and it would ensure that reported results represented real progress.

However, the community also expressed reservations. Over-tight specifi-
cation of benchmarks might limit innovation. To give an example not taken
from the survey, the results of the novel linear-scaling approach to symbolic
regression fitness advocated by Keijzer [25] were not directly comparable to
previously-published results with the same functions. A novel technique to
improve performance in the context of GP numerical constants might be
“outlawed” by a benchmark that tightly specified their mechanism.

The community is also aware of the danger that a benchmark suite could
result in research distortion, i.e. researchers focusing only on benchmarks,
“teaching to the test,” and neglecting problems with large, real-world impact.
The same argument has been made recently in the broader field of machine
learning [5,51].

4.2 Rigor, Openness, and Replicability are more Important than Benchmarks

It is the strong consensus of the GP community that the current experimen-
tal regime is inadequate: see the responses to Questions 5 and 14. In many
cases, respondents argued that it would be better to focus on serious prob-
lems concerning experimental and statistical rigor, openness and replicability,
and reporting methodologies, rather than purely on the choice of benchmark
problems. Responses to the demographics and other questions confirm that
the vast majority of survey respondents came from within the field of GP.
These criticisms of the field should be understood in this context: it is a case
of GP practitioners wanting to improve their field, rather than the field being
criticized from outside.

3 http://gpbenchmarks.org/publications/

http://gpbenchmarks.org/publications/


16 White et al.

We broadly agree with these criticisms. In response, we argue that addressing
the problem of badly-chosen benchmarks will not prevent progress on these
other issues. It also seems unlikely that any “big bang” solution to these
problems exists. Instead, improvements are likely to come about through a
gradual process of education of new entrants to the field, raising awareness,
and gradually raising the bar during the review process. We hope that this
paper will contribute to raising awareness of the broader issue of experimental
rigor in addition to that of benchmarks.

The issues raised in the survey overlap with points made by Johnson in his
classic paper on the experimental analysis of algorithms [24]. A major problem
with the current experimental regime is the difficulty of comparing results across
papers (Question 6), which corresponds to Johnson’s “ensure reproducibility”
and “ensure comparability” principles. More generally, Johnson’s paper contains
a wealth of hard-won knowledge of what to do and what not to do when
reporting experimental results.

Many GP results are measured using ideal solution counts: whether or
how often the optimum, or some threshold near the optimum, is reached.
The most common approach [28] defines the computational effort measure
as an estimate of the minimum number of individuals to be processed in a
generational algorithm in order to achieve a high probability of discovering
a solution. This measure has received significant criticism [37,3,31,34,2,24].
Critics have argued that ideal solution counts are really a measure of how
well a method solves trivial problems, and that other measures would be
better, such as best fitness of run (appropriate for problems where the goal
is optimization) and generalization measures such as final testing against a
withheld generalization set, or K-fold validation (appropriate for problems
where the goal is to perform model-fitting). Thus, reporting the distribution of
fitness quality across independent runs is a better choice.

However, the expected fitness reflects real-world usage only when one
anticipates that the user will be able to perform only a single run of the
algorithm on a problem. Consider three systems for solving a hypothetical
problem: system A achieves 0.4 error in all runs, system B achieves 0.1 error
half the time and 0.9 error the other half, and system C achieves 0.01 error once
every ten runs, but 0.99 error on all others. If the real-world usage scenario
for this problem allows just one run, then examining just the mean error is
appropriate, and favors system A. If the usage scenario allows for several runs,
rather than one, system B is favored. If the usage scenario allows for a larger
number of runs, the preferred system changes again to C. Johnson [24] discusses
a computationally efficient bootstrapping method for estimating the “best of k”
statistic that we suggest as a measure to correctly compare these three systems
given the number of available runs k.

The issues of open source and open data, as raised in responses to Question
18 and others, are being discussed throughout the sciences.4 We have made
one contribution in this area, adding 57 symbolic regression benchmarks (those

4 http://sciencecodemanifesto.org

http://sciencecodemanifesto.org


Better GP Benchmarks: Community Survey Results and Proposals 17

listed in [32]) and several constructed problems (K-Landscapes, Royal Trees,
Lid, Order and Majority, and Order Tree) to the open-source ECJ toolkit.5

4.3 No Consensus on Benchmark Suite

There is some community support for the creation of a new benchmark suite.
However, responses concerning hypothetical future use of such a suite must
be balanced against the reality that most respondents had not used previous
benchmark suites (Question 10). There is also no prospect any new suite will
take over and displace individual researchers’ preferred problems (Question
16). This may help to reduce the danger of research distortion from a suite.
There is also no consensus as to which problems should form part of a suite. A
huge variety of problems and problem domains were suggested, with no clear
winners. A variety of sometimes contradictory responses were also received on
the features desirable in benchmarks and in a suite.

However, there was a strong consensus that certain problems should no
longer be used for benchmarking purposes. In the next sections, we therefore
propose a benchmark “blacklist” and for each blacklisted problem, we propose
one or more appropriate replacements.

5 A Benchmark Blacklist

We claim broad support from the community for the proposition that a bench-
marking experiment using only the problems given in Table 3 is inadequate.

Domain Problem

Symbolic Regression Quartic polynomial
Low-order polynomials

Boolean Parity (fixed input size)
Multiplexer (fixed input size)
Other simple one-output Boolean functions

Classification Pima, Iris, Wine datasets

Path-finding and Planning Artificial Ant
Lawnmower

Table 3 A proposed blacklist of benchmark problems.

The review of current practice (see Section 3.2) suggests that these problems
are still in use. The survey results in Section 2, especially the answers to
Questions 6 and 23, demonstrates support for the blacklist. To leave the reader
in no doubt as to the strength of feeling against these benchmarks, we provide
a few quotes from the survey’s free text responses:

5 http://cs.gmu.edu/~eclab/projects/ecj/

http://cs.gmu.edu/~eclab/projects/ecj/


18 White et al.

Domain Problem Replaces

Symbolic Regression Keijzer-6 Quartic polynomial
Korns-12
Vladislavleva-4 Original paper
incorrectly stated 14.
Nguyen-7
Pagie-1
Dow Chemical dataset
GP Challenge dataset

Boolean functions Multiple output multiplier Multiplexer, Parity

Classification PSP (protein structure) Iris, Pima, Wine
CHIRP suite

Planning and Control Mario gameplay Artificial ant
Physical TSP Lawnmower

Synthetic Problems K Landscapes (none)
Order Tree

Table 4 Alternatives to the blacklisted problems. References are provided below.

– “Far too many papers include results only on simple toy problems which
are often worse than meaningless: they can be misleading”;

– “[we should exclude] irrelevant problems that are at least 20 years old”;

– “get rid of some outdated, too easy benchmarks”;

– “the standard ‘easy’ Koza set should not be included”;

– “[it is] time to move on.”

6 Recommended Alternative Benchmarks

If some of the field’s most common benchmark problems are to be blacklisted,
we should offer alternatives. Since the community survey has revealed a broad
consensus that the problem domains used in existing benchmarks should
continue to be used (Question 19), it makes sense to attempt like for like
replacements. Thankfully, good alternatives already exist in almost all cases.
Our proposals are listed in Table 4.

The algorithmic and synthetic problem domains are not represented in
the blacklist, but did receive majority approval from survey respondents for
inclusion in future benchmark suites. We therefore wish to propose good
benchmarks in these domains. However, we do not perceive any clear candidates
for the algorithmic domain, as discussed in Section 6.6, and so it is omitted
from the proposed benchmarks.

For each blacklisted problem domain, Table 4 lists one or more alternatives
in the same domain. Our goals in choosing these problems were: to achieve
a diverse set of modern, interesting, and difficult problems; to allow some
comparison with non-GP techniques; to strike a balance between problems



Better GP Benchmarks: Community Survey Results and Proposals 19

Training Set
Name Variables Equation Testing Set

Keijzer-6 [25] [46] 1
∑x

i
1
i

E[1, 50, 1]
E[1, 120, 1]

Korns-12 [27] 5 2 − 2.1 cos(9.8x) sin(1.3w) U[-50, 50, 10000]
U[-50, 50, 10000]

Vladislavleva-4 [50] 5 10
5 +

∑5
i=1(xi − 3)2

U[0.05, 6.05, 1024]
U[-0.25, 6.35, 5000]

Nguyen-7 [33] 1 ln(x + 1) + ln(x2 + 1) U[0, 2, 20]
None

Pagie-1 [36] 2 1
1 + x−4 + 1

1 + y−4 E[-5, 5, 0.4]
None

Dow Chemical 57 chemical process data6 747 points
(see Section 6.1) 319 points

GP Challenge [56] 8 protein energy data 1250–2000 per protein
(see Section 6.1) None

Table 5 Proposed symbolic regression benchmarks. In the training and testing sets, U[a,b,c]
is c uniform random samples drawn from a to b, inclusive. E[a,b,c] is a grid of points evenly
spaced with an interval of c, from a to b inclusive.

which are fast to evaluate and problems which require more complex processing;
and to allow some tunability of problems.

We do not argue that papers using the replacement problems must neces-
sarily use all of them. However, we caution against cherry-picking, a problem
identified in the community survey: if one runs experiments on multiple prob-
lems, clearly one must not choose to report only the best results.

The following sub-sections briefly discuss the problem domains, explaining
our choice of benchmarks. We emphasize that we welcome feedback from the
community on both the blacklist and the proposed replacements.

6.1 Symbolic Regression

As Symbolic Regression was the most requested problem domain from the
survey (Question 19) as well as the most commonly used benchmark in the
literature survey, we have suggested more benchmarks for this domain than
any other. The seven proposed problems are listed in Table 5.

In order to ensure variety, we have selected one problem from each of
several well-known sources in the specialist literature. We have chosen the more
difficult problems available, both real-world and synthetic. The selection aims
for robust difficulty: changes in alphabet, GP technique, numerical constant
creation, and so on should not render the problems trivial. In fact, we have
chosen not to specify such details here (they are specified in the original
papers and collected in our previous work [32]), in order to make the problems
representation-independent. These were issues mentioned by several respondents

6 http://casnew.iti.upv.es/index.php/evocompetitions/105-symregcompetition

http://casnew.iti.upv.es/index.php/evocompetitions/105-symregcompetition


20 White et al.

to the community survey. However, this means that in-paper controls will
continue to be needed in most cases.

Several of these problems first appeared in papers with large numbers of
citations, suggesting that they are well-known. The Keijzer-6 and Vladislavleva-
4 problems require extrapolation, not just interpolation. The Korns-12 problem
is the only problem unsolved in [27] despite the application of several specialized
techniques. Note that the dataset is specified to have 5 variables, even though
only 2 affect the output: the aim is to test the ability of the system to discard
unimportant variables and avoid using them to over-fit. The authors of [50] say
that Vladislavleva-4 is “our favourite problem”, and that their system “appears
to have most difficulties in discovering the simple and harmonious input–output
relationship”. The Pagie-1 problem has a reputation for difficulty [36,19] despite
being smooth, and is scalable, in that extra dimensions could be added if or
when the original version is seen as solved (the same is true of Vladislavleva-4).
The Nguyen-7 problem features different basic functions from the others. Two
of these problems provide no separate testing sets. In these cases a testing
protocol can still be implemented using a hold-out set or cross-validation.

The Dow Chemical dataset was the subject of the Symbolic Regression
EvoCompetitions event of the 2010 EvoStar conference. The dataset is available
online, along with a description of the competition.7 The goal was “to generate
a robust symbolic regression model”, leaving unspecified the objective function,
the set of allowed functions, constants, and other details. This real-world
example further motivates our choice not to specify the alphabet for the
synthetic problems. Another dataset of the same origin was used as the “Tower”
problem [50]. It is available online.8

The GP Challenge dataset9 was proposed as a GP benchmark by Widera
et al. [56]. The problem is to model the energy function of various proteins in
terms of numerical input features.

6.2 Boolean Problems

Boolean problems have always been a mainstay of GP benchmarking. They
abstract away difficult real-world issues and there are few if any edge-cases
that require special attention (no division by zero, overflow, negative roots,
infinities, or similar, which are problematic in symbolic regression). Similarly,
issues such as numerical constants, sampling methodology, or approximate
success criteria are avoided. Boolean functions often require reuse of input
values and intermediate values and functionality, making them good tests for
techniques designed to exploit functional redundancy in a problem.

However, the community has clearly shown that many are against the over-
use of typical Boolean problems such as the parity and multiplexer problems
for low, fixed arity. Some respondents argued that they are “toy” problems,

7 http://casnew.iti.upv.es/index.php/evocompetitions/105-symregcompetition
8 http://www.symbolicregression.com/
9 http://www.infobiotics.org/gpchallenge

 http://casnew.iti.upv.es/index.php/evocompetitions/105-symregcompetition
http://www.symbolicregression.com/
http://www.infobiotics.org/gpchallenge


Better GP Benchmarks: Community Survey Results and Proposals 21

are uninteresting because they have been solved many times, or are trivial to
solve using non-GP techniques. Previous work has also argued that, since the
multiplexer’s fitness values tend to chunk in powers of 2, statistical treatment
of mean best fitness is problematic [32]. Individuals can also become expensive
to evaluate for large input sizes, since it is usually necessary to test all 2n fitness
cases [23] (this argument does not necessarily apply to Boolean problems of
variable input sizes [26]).

Our proposed replacement Boolean problem solves some of these issues,
but not all. According to Walker and Miller [53], the multiple output parallel
multiplier is by far the most difficult problem they attempted, and is now
being seen as a benchmark. They state that the 5 bit multiplier is currently
the largest successfully evolved. The problem has not been over-used in GP. It
is interesting because multiple outputs are not native to standard GP. We also
suggest that using multiple difficult Boolean problems of differing input sizes
can help to avoid some of the drawbacks mentioned in the survey responses.

6.3 Classification

Classification is one of the major applications of machine learning. The best-
known collection of datasets is the University of California, Irvine (UCI)
machine learning repository10 [10]. At the time of writing UCI had 228 datasets,
with the majority being classification problems, as well as a small collection
of regression and clustering datasets across a wide variety of domains. The
datasets are popular in the machine learning community and frequently used for
benchmarking. As described in Section 3.2, several of these problems are also
popular in GP experimentation. However, some are either very easy (e.g. Iris
or Wine), or very noisy (e.g. Pima). Several survey respondents argued against
using them as benchmarks for these reasons. It has also been pointed out that
very simple classifiers perform well on many frequently used UCI datasets [22],
and the unreflective usage of UCI problems for benchmarking purposes has
been strongly criticized [42,17].

Nevertheless, the state of the art in machine learning classification is often
demonstrated in terms of performance on a selection of UCI and similar
datasets. An example is the collection of 20 diverse classification problems
used in [58], which we will refer to as the “CHIRP suite”. Although this suite
was not mentioned in survey responses, neither was there strong support for
any other classification problem. Therefore we propose this suite for use in
testing GP classification. The Weka machine learning toolkit11 is a very useful
resource for classification benchmarking: it provides many datasets, including
the 20 CHIRP suite problems, and implementations of many common machine
learning classification algorithms.

10 http://archive.ics.uci.edu/ml/
11 http://www.cs.waikato.ac.nz/~ml/weka/

http://archive.ics.uci.edu/ml/
http://www.cs.waikato.ac.nz/~ml/weka/


22 White et al.

The protein structure prediction (PSP) dataset12 provides real-world data
on protein folding in both regression and classification formulations [1]. We
have proposed the datasets for classification because protein structure is an
interesting and important problem, and the dataset is curated by GP practi-
tioners with the aim of testing robustness and scalability in a realistic setting.
We have omitted the regression datasets only because several good problems
have already been identified for regression. The PSP datasets are very large,
so training on an entire dataset may not be feasible.

Competitions are another possible source of datasets. SIGKDD hosts an
annual data mining and knowledge discovery competition, the KDD Cup.13 The
tasks usually include building regression or classification models on large real-
world datasets. The results of previous competitions are well documented and
can be used as reference values. Kaggle14 is a crowd-sourcing platform for data
prediction competitions. Sponsored competitions on Kaggle feature time limits
and provide data under a license that forbids use for other purposes. However,
Kaggle also frequently hosts research-oriented or educational competitions. The
NIPS feature selection challenge15 includes five datasets, with a large number of
features and few training examples, which could be suitable for benchmarking
GP algorithms especially designed for such problems. However, there are also
disadvantages to such competitions: algorithm comparisons can be difficult as
the impact of various data preprocessing and model selection steps must be
considered. Some well-known competitions such as the Netflix prize16 require
a great deal of domain knowledge, and so seem unsuitable as GP benchmarks.

6.4 Planning and Control

The real-world domain of planning and control can involve applications in
vehicle piloting, robotics, and scheduling. Computer games and agent controllers
offer cut-down, abstracted versions of these tasks, and can be entertaining and
challenging problems. Several representation-independent competitions already
exist for computer game controllers. GP could use these competitions to test
new ideas against AI techniques developed in other fields, as well as against
human players and their hand crafted controllers.

Some competitions (TORCS17 [6,30], Mario Gameplay18 [47], and Physical
TSP19 [38]) lend themselves to offline comparison between GP techniques, as
controllers can be tested against static environments. Others (Ms. Pacman20

12 http://icos.cs.nott.ac.uk/datasets/psp_benchmark.html
13 http://www.sigkdd.org/kddcup/
14 http://www.kaggle.com/
15 http://www.nipsfsc.ecs.soton.ac.uk/datasets/
16 http://www.netflixprize.com/
17 http://torcs.sourceforge.net/
18 http://www.marioai.org/
19 http://www.ptsp-game.net/
20 http://www.pacman-vs-ghosts.net/

http://icos.cs.nott.ac.uk/datasets/psp_benchmark.html
http://www.sigkdd.org/kddcup/
http://www.kaggle.com/
http://www.nipsfsc.ecs.soton.ac.uk/datasets/
http://www.netflixprize.com/
http://torcs.sourceforge.net/
http://www.marioai.org/
http://www.ptsp-game.net/
http://www.pacman-vs-ghosts.net/


Better GP Benchmarks: Community Survey Results and Proposals 23

[12], AI Challenge21 [8], Robocode22 [20], and Battle Code23) require head to
head comparison of controllers. The advantage is obvious in a competition
scenario: the difficulty of the problem increases as the quality of solutions
improve. However, comparisons to previous techniques can be difficult, since
fitness is relative. It might be possible to allow benchmarking with these
problems by publishing a set of periodically updated reference opponents.

Games can also have significant limitations as benchmarks. The need
to simulate a game to evaluate each individual makes these time intensive
benchmarks. The problems being solved may not translate into real world
applications. Also, the best competitors may need to utilize domain specific
information, detracting from the generality of results.

We propose two interesting games as possible benchmarks: Mario gameplay,
and the Physical TSP. Both are suited to offline comparisons, and relative
to some other games, are relatively amenable to re-implementation. They do
not require significant domain knowledge to get started. The Physical TSP
competition includes a real-time aspect which prevents reproducibility, but this
can be turned off for benchmarking purposes.24 Evaluation of a game controller
is very time-consuming for these games, relative to many of the other problems
we have recommended. However this seems to be unavoidable in this domain.
Feedback is solicited on better alternatives.

Many game maps suitable for testing path-finding agents are available
online.25

6.5 Synthetic Problems

Several purely synthetic problems have been defined in the GP literature. They
have several advantages: they are usually self-contained, in that they avoid diffi-
culties in definition or implementation that are common in real-world problems;
and they are often tunably difficult. In some cases the aim is to demonstrate
and study specific issues such as bloat or crossover behavior. Examples in-
clude the Lid problem [4], the Max problem [13], Order and Majority [14],
the Royal Trees [40], and Trap functions [48]. In other cases, the problems
are intended as genuine benchmarks, including the K Landscapes [49], Order
Tree [21], and Tree String [16]. All of the latter three have similar advantages
and disadvantages: they have been deliberately designed as benchmarks, are
modern, and are tunably difficult; on the other hand they are quite tied to the
tree representation and are not obviously related to real-world problems. The
Tree String problem is multi-objective, an advantage in terms of realism, but

21 http://aichallenge.org/
22 http://robocode.sourceforge.net/
23 http://www.battlecode.org/
24 https://groups.google.com/d/msg/the-ptsp-competition/TvtWhELr-z4/

ACYCrNMVxToJ
25 http://www.aigameresearch.org/

http://aichallenge.org/
http://robocode.sourceforge.net/
http://www.battlecode.org/
https://groups.google.com/d/msg/the-ptsp-competition/TvtWhELr-z4/ACYCrNMVxToJ
https://groups.google.com/d/msg/the-ptsp-competition/TvtWhELr-z4/ACYCrNMVxToJ
http://www.aigameresearch.org/


24 White et al.

an obstacle to some experimenters. For this reason, we have not included it
among our proposed replacement problems.

6.6 Algorithmic Programming Problems

To emulate the type of programming done by human programmers has always
been one of the goals of the GP field. Work in this domain is sometimes referred
to as “real programming”, “object-oriented GP”, “traditional programming”,
or “Turing-complete GP”. We will refer to it as the “algorithmic” domain. It is
a very different task from, for example, evolving numerical or Boolean formulae.
Key features include stateful code, looping or recursion, conditional execution,
multiple data types and compound data structures, and (compared to many
GP applications) a very high degree of difficulty. This domain did not feature
in the proposed blacklist of Section 5.

Survey results suggested that many respondents were in favor of including
algorithmic GP benchmarks in any benchmark suite: in Question 19 (see
Figure 6), it was the second most popular category after symbolic regression.
However, it seems that there are few algorithmic GP benchmarks that have
gained wide acceptance. This was one of the disadvantages of the current GP
experimental regime highlighted in free-text responses to Question 6. Two
respondents mentioned “software engineering” problems, and problems such as
those typically found on undergraduate programming courses, in response to
Question 19. However, no specific benchmarks were proposed.

One possibility is to look outside the field of GP for benchmark problems.
Other fields often aim to solve problems similar to those tackled using GP. In the
field of inductive programming [9], Gulwani [15] tackles several programming
problems rarely seen in the field of GP, such as the creation of sorting algorithms,
inverse functions like deserialization (given a serializer), and text-editing macros.
Many bitwise algorithms and similar problems are proposed and solved (often
through brute force) in “Hacker’s Delight” [54].

Search-based software engineering [18] is another field that could serve as a
source for algorithmic GP benchmark problems. This field has already seen
some GP applications as a tool for repairing bugs found in human created
software [55,57].

Competitions are again a possible source of benchmarks in this domain.
For example, Google Code Jam is an ongoing competition for human coders.26

Problems range from the very easy, such as reversing a list of words, to very
challenging algorithm design. They are specified in textual form, usually with
example input-output pairs. Since it is a competition for human coders, good
GP efforts might qualify as human-competitive. “Online judges”, essentially au-
tomated graders for programming tasks, may be a useful resource. For example,
the Sphere online judge27 provides automated grading of 3086 problems.

26 http://code.google.com/codejam/contests.html
27 http://www.spoj.pl/

http://code.google.com/codejam/contests.html
http://www.spoj.pl/


Better GP Benchmarks: Community Survey Results and Proposals 25

7 Conclusions

In this paper, we have contributed the following:

1. A community survey capturing current attitudes to empirical practice
within Genetic Programming.

2. The results of a discussion held at the GECCO 2012 conference.

3. An extended review of problems used in empirical work published in recent
years at major conferences.

4. A proposed blacklist of GP problems that should no longer be used.

5. Proposed replacement problems for those excluded through the blacklist.

6. Further resources for those seeking new problems and domains for their
research.

7.1 What Next?

For the moment, we do not plan to make any further proposals. Instead, we
wish to see what impact, if any, the proposed blacklist and replacements have on
the field. We intend to revisit the survey of papers over time in order to assess
this impact. The suggested replacements may act as a vehicle for assessing the
palatability of any extensive, newly-proposed benchmark suite.

In a few areas there is a clear need for the development of new benchmarks.
As stated, we think that this task should be left to individual researchers with
specific experience. For algorithmic GP, a good problem or set of benchmark
problems in this area would be a significant contribution. In the games domain,
the required task is not to invent new problems, but to make existing games
more usable as GP benchmarks.

Finally, we wish to appeal to the GP community to make full use of the
information presented here. There are many interesting issues raised, and
by making the data freely available we hope to encourage practitioners to
draw their own conclusions. There is an opportunity to drive the field forward
by developing new methodologies, improving statistical approaches, ensuring
replicability of results and pushing the boundaries of GP towards more diverse
and challenging problems.

Acknowledgements Thanks to Ricardo Segurado and the University College Dublin
CSTAR statistics consultancy; thanks to Marilyn McGee-Lennon in the School of Computing
Science at the University of Glasgow for her advice on survey design, and to the School itself
for providing the supporting web service. Thanks to all those who participated in the GP
survey and have engaged in discussion through the GP mailing list, the benchmark mailing
list, and the GECCO 2012 debate. Thanks to the anonymous reviewers of this paper.

David R White is funded by the Scottish Informatics and Computer Science Alliance.
James McDermott is funded by the Irish Research Council. Gabriel Kronberger is supported
by the Austrian Research Promotion Agency, Josef Ressel-centre “Heureka!” Wojciech
Jaśkowski is supported by Polish Ministry of Science and Education, grant no. 91-531/DS.



26 White et al.

References

1. Bacardit, J., Stout, M., Krasnogor, N., Hirst, J.D., Blazewicz, J.: Coordination number
prediction using learning classifier systems. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO), p. 247. Seattle, Washington, USA (2006).
DOI 10.1145/1143997.1144041

2. Barrero, D.F., R-Moreno, M., Castano, B., Camacho, D.: An Empirical Study on the
Accuracy of Computational Effort in Genetic Programming. In: Proceedings of the
Congress on Evolutionary Computation (2011)

3. Christensen, S., Oppacher, F.: An Analysis of Koza’s Computational Effort Statistic for
Genetic Programming. In: Proceedings of EuroGP. Springer-Verlag (2002)

4. Daida, J.M., Bertram, R., Stanhope, S., Khoo, J., Chaudhary, S., Chaudhary, O.:
What Makes a Problem GP-Hard? Analysis of a Tunably Difficult Problem in Genetic
Programming. Genetic Programming and Evolvable Machines 2, 165–191 (2001)

5. Drummond, C., Japkowicz, N.: Warning: Statistical benchmarking is addictive. Kick-
ing the habit in machine learning. Journal of Experimental & Theoretical Artificial
Intelligence 22(1), 67–80 (2010)

6. Espié, E., Guionneau, C., Wymann, B., Dimitrakakis, C., Coulom, R., Sumner, A.:
TORCS—the open racing car simulator (2005)

7. Feldt, R., O’Neill, M., Ryan, C., Nordin, P., Langdon, W.B.: GP-Beagle: A benchmarking
problem repository for the genetic programming community. In: Late Breaking Papers
at GECCO (2000)

8. Fernández-Ares, A., Mora, A., Merelo, J., Garćıa-Sánchez, P., Fernandes, C.: Optimiz-
ing player behavior in a real-time strategy game using evolutionary algorithms. In:
Proceedings of the Congress on Evolutionary Computation, pp. 2017–2024. IEEE (2011)

9. Flener, P., Schmid, U.: An introduction to inductive programming. Artificial Intelligence
Review 29(1), 45–62 (2008)

10. Frank, A., Asuncion, A.: UCI machine learning repository (2010). URL http://archive.

ics.uci.edu/ml

11. Friedman, J.: Multivariate adaptive regression splines. The Annals of Statistics pp. 1–67
(1991)

12. Gallagher, M., Ryan, A.: Learning to play Pac-Man: An evolutionary, rule-based approach.
In: Proceedings of the Congress on Evolutionary Computation, vol. 4, pp. 2462–2469.
IEEE (2003)

13. Gathercole, C., Ross, P.: An Adverse Interaction between Crossover and Restricted
Tree Depth in Genetic Programming. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO) (1996)

14. Goldberg, D.E., O’Reilly, U.M.: Where does the Good Stuff Go, and Why? How Con-
textual Semantics Influence Program Structure in Simple Genetic Programming. In:
Proceedings of EuroGP (1998)

15. Gulwani, S.: Dimensions in program synthesis. In: Proceedings of the 12th international
ACM SIGPLAN symposium on Principles and practice of declarative programming, pp.
13–24. ACM (2010)

16. Gustafson, S., Burke, E.K., Krasnogor, N.: The Tree-String Problem: An Artificial
Domain for Structure and Content Search. In: Proceedings of EuroGP (2005)

17. Hand, D.J.: Classifier technology and the illusion of progress. Statistical Science 21(1),
1–14 (2006)

18. Harman, M., Jones, B.: Search-based software engineering. Information and Software
Technology 43(14), 833–839 (2001)

19. Harper, R.: Spatial co-evolution: quicker, fitter and less bloated. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO), pp. 759–766. ACM
(2012)

20. Hartness, K.: Robocode: using games to teach artificial intelligence. J. Comput. Sci.
Coll. 19(4), 287–291 (2004)

21. Hoang, T.H., Hoai, N.X., Hien, N.T., McKay, R.I., Essam, D.: ORDERTREE: a New
Test Problem for Genetic Programming. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO) (2006)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Better GP Benchmarks: Community Survey Results and Proposals 27

22. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets.
Machine Learning 11, 63–90 (1993)

23. Imamura, K., Foster, J., Krings, A.: The test vector problem and limitations to evolving
digital circuits. In: Proceedings of the Second NASA/DoD Workshop on Evolvable
Hardware, pp. 75–79. IEEE (2000)

24. Johnson, D.: A theoretician’s guide to the experimental analysis of algorithms. Data struc-
tures, near neighbor searches, and methodology: fifth and sixth DIMACS implementation
challenges 59, 215–250 (2002)

25. Keijzer, M.: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling.
In: Proceedings of EuroGP (2003)

26. Kirshenbaum, E.: Iteration over vectors in genetic programming. HP Laboratories
Technical Report HPL-2001-327 (2001)

27. Korns, M.F.: Accuracy in Symbolic Regression. In: Proceedings of Genetic Programming
Theory and Practice (2011)

28. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press (1992)

29. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press (1994)

30. Loiacono, D., Togelius, J.: Competitions@WCCI-2008: simulated car racing competition.
ACM SIGEVOlution 2(4), 35–36 (2007)

31. Luke, S., Panait, L.: Is The Perfect The Enemy Of The Good? In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO) (2002)

32. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L., Jaśkowski,
W., Krawiec, K., Harper, R., Jong, K.D., O’Reilly, U.M.: Genetic programming needs
better benchmarks. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO). ACM, Philadelphia (2012)

33. Nguyen, Q.U., Nguyen, X.H., O’Neill, M., Mckay, R.I., Galván-López, E.: Semantically-
Based Crossover in Genetic Programming: Application to Real-valued Symbolic Regres-
sion. Genetic Programming and Evolvable Machines 12, 91–119 (2011)

34. Niehaus, J., Banzhaf, W.: More on Computational Effort Statistics for Genetic Program-
ming. In: Proceedings of EuroGP (2003)

35. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open Issues in Genetic Program-
ming. Genetic Programming and Evolvable Machines 11(3/4), 339–363 (2010)

36. Pagie, L., Hogeweg, P.: Evolutionary Consequences of Coevolving Targets. Evolutionary
Computation 5, 401–418 (1997)

37. Paterson, N., Livesey, M.: Performance Comparison in Genetic Programming. In: Late
Breaking Papers at GECCO (2000)

38. Perez, D., Rohlfshagen, P., Lucas, S.M.: Monte-Carlo tree search for the physical travelling
salesman problem. In: C. Di Chio, A. Agapitos, S. Cagnoni, C. Cotta, F. Fernández,
G.A.D. Caro, R. Drechsler, A. Ekárt, A.I. Esparcia-Alcázar, M. Farooq, W.B. Langdon,
J.J. Merelo-Guervós, M. Preuss, H. Richter, S. Silva, A.S. oes, G. Squillero, E. Tarantino,
A.G.B. Tettamanzi, J. Togelius, N. Urquhart, A. Şima Uyar, G.N. Yannakakis (eds.)
Proceedings of EvoApplications, Lecture Notes in Computer Science, vol. 7248, pp.
255–264. Springer Berlin Heidelberg (2012)

39. Phong, D., Hoai, N., McKay, R., Siriteanu, C., Uy, N., Park, N.: Evolving the best
known approximation to the q function. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pp. 807–814. ACM (2012)

40. Punch, B., Zongker, D., Goodman, E.: The Royal Tree Problem, a Benchmark for Single
and Multiple Population Genetic Programming. In: Advances in Genetic Programming
2, pp. 299–316. MIT Press (1996)

41. Ritchie, J., Lewis, J. (eds.): Qualitative research practice: A guide for social science
students and researchers. Sage (2003)

42. Salzberg, S.: On comparing classifiers: Pitfalls to avoid and a recommended approach.
Data Mining and Knowledge Discovery 1, 317–328 (1997)

43. Sendhoff, B., Roberts, M., Yao, X.: Evolutionary Computation Benchmarking Repository.
IEEE Computational Intelligence Magazine 1(4), 50–60 (2006)

44. Sprott, J.C.: Simplest dissipative chaotic flow. Physics letters A 228(4), 271–274 (1997)
45. Strauss, A., Corbin, J.: Grounded Theory in Practice. Sage (1997)



28 White et al.

46. Streeter, M., Becker, L.A.: Automated discovery of numerical approximation formulae
via genetic programming. Genetic Programming and Evolvable Machines 4, 255–286
(2003). URL http://dx.doi.org/10.1023/A:1025176407779

47. Togelius, J., Karakovskiy, S., Baumgarten, R.: The 2009 mario ai competition. In:
Proceedings of the Congress on Evolutionary Computation (2010)

48. Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A Study of Fitness Distance
Correlation as a Difficulty Measure in Genetic Programming. Evol. Comput. 13, 213–239
(2005). DOI http://dx.doi.org/10.1162/1063656054088549

49. Vanneschi, L., Castelli, M., Manzoni, L.: The K Landscapes: a Tunably Difficult Bench-
mark for Genetic Programming. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO) (2011)

50. Vladislavleva, E., Smits, G., Den Hertog, D.: Order of Nonlinearity as a Complexity
Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming.
IEEE Transactions on Evolutionary Computation 13(2), 333–349 (2009)

51. Wagstaff, K.L.: Machine learning that matters. In: J. Langford, J. Pineau (eds.) Pro-
ceedings of the 29th International Conference on Machine Learning (ICML-12) (2012)

52. Walker, J., Miller, J.: Predicting prime numbers using Cartesian genetic programming.
Proceedings of EuroGP pp. 205–216 (2007)

53. Walker, J., Miller, J.: The automatic acquisition, evolution and reuse of modules in
Cartesian genetic programming. IEEE Transactions on Evolutionary Computation 12(4),
397–417 (2008)

54. Warren, H.: Hacker’s delight. Addison-Wesley Professional (2003). URL http://

hackersdelight.org/

55. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically Finding Patches using
Genetic Programming. In: Proceedings of the 31st International Conference on Software
Engineering (2009)

56. Widera, P., Garibaldi, J., Krasnogor, N.: GP challenge: Evolving energy function for
protein structure prediction. Genetic Programming and Evolvable Machines 11, 61–88
(2010)

57. Wilkerson, J.L., Tauritz, D.R., Bridges, J.: Multi-objective coevolutionary automated
software correction system. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO). ACM, Philadelphia (2012)

58. Wilkinson, L., Anand, A., Tuan, D.: CHIRP: a new classifier based on composite
hypercubes on iterated random projections. In: Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD), vol. 11, pp.
6–14 (2011)

http://dx.doi.org/10.1023/A:1025176407779
http://hackersdelight.org/
http://hackersdelight.org/

	Introduction
	Community Survey
	Other Sources of Data and Opinion
	Implications
	A Benchmark Blacklist
	Recommended Alternative Benchmarks
	Conclusions

